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The chemical industry is increasing its efforts to reduce the environmental burdens of chemical
production. One focus is to implement energy-efficient processes and green technologies early in
the process design to maximize environmental efficiency and to reduce costs. However, as data on
many chemical products are scarce, many sustainability studies are hampered by the lack of
information on production processes, and chemicals are often neglected or only crudely estimated.
Models that estimate production data and environmental burdens can be vital tools to aid
sustainability efforts. In addition, they are useful for the environmental assessment of chemicals
without access to production data, i.e. in supply-chain management or for the assessment of
products using chemicals as materials. Using mass and energy flow data on the petrochemical
production of 338 chemicals, we developed models that can estimate key production parameters
directly from the molecular structure. The data sources were mostly production data provided by
industrial partners, extended by data from the ecoinvent database. The predicted parameters were
the Cumulative Energy Demand (CED), the Global Warming Potential (GWP), the Eco-indicator
99 score, a Life Cycle Assessment (LCA) method, and the electricity and heat use over the
production cycle. Model outputs include a measure of the prediction uncertainty. The median
relative errors of the models were between 10% and 30%, within acceptable ranges for estimations.
The modelled parameters offer a thorough insight into the environmental performance of a
production process and the model estimates can be of great service in process design, supply-chain
management and environmental assessments of chemical products in the early planning and
design stages where production data are not available.

Introduction

The optimal time to minimize the environmental burdens of
chemical production is in the early planning and design stages.
In the later stages, when the processes are actually implemented,
improvements are much more costly and time-consuming to
implement. Later changes to synthesis approaches are gener-
ally prohibitively expensive, and end-of-pipe improvements are
expensive and less efficient than planning for sustainable produc-
tion. Therefore, the sooner in the planning phase information
about the sustainability of a planned process can be acquired,
the more helpful it is. Life Cycle Assessment (LCA)1,2 is a
method to determine the environmental impacts of processes
and products and has been used extensively to assess chemical
production.3-6 LCA results can be very helpful in process
design. Supply chain management and assessment is another
important application. However, inventory data of chemicals,
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i.e. emissions and resource uses throughout the production
life cycle, are scarce, mostly due to missing information or
confidentiality issues. Thus, they often have to be modeled or
estimated.7,8

In order to fill data gaps, inventory models for processes have
been put forward,4,9 as well as tools to model process parameters,
such as energy use.10 Inventory databases can be help in cases of
missing process data and can be used to supply upstream data
on auxiliaries and energy production processes. For instance,
publicly available databases such as the ecoinvent database11,12

or national LCI initiatives (e.g.13) are used. Moreover, several
chemical companies are using LCA to assess their products14,15

and have created internal databases to support their decision-
making. Other companies use eco-efficiency analysis, an LCA-
based tool to carry out comparative assessment of products and
processes.16 However, process-based inventory modeling often
suffers from large uncertainties when little or no information
is available. This may lead to severe estimation errors. Models
that are not process-based circumvent these problems. Such
models are the molecular-structure-based models (MSMs).17

These models based on neural networks (NNs)18-20 can estimate
key inventory parameters and environmental impacts over the
whole production cycle using only molecular features as input
data. The results are cradle-to-gate inventory data or Life Cycle
Impact Assessment (LCIA) results. Their functionality and
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potential has been demonstrated17 using a very basic dataset
that limited the resulting models to only basic chemicals.

Neural networks’ basic premise is that the interactions among
a large number of simple computing elements, called nodes or
neurons, arranged in input, hidden and output layers, can effect
complex information processing. As universal approximators,
neural networks are suitable for handling multivariate systems
of any complexity level, while as “black box” models they
do not require knowledge of the underlying principles of the
system under consideration. Instead, they are extracting the
necessary information directly from training data, being tolerant
to faults and noise included in them.18 In training procedure,
during which the network learns the relationships between input
and output variables, the network parameters are determined
and optimized in a way to minimize the errors between the
true outputs and the network predictions.19 While the “black
box” structure of neural networks can be a burden when
analyzing results, it allows the use of confidential production
data. Although they are not new in concept, the interest in
them has increased significantly in the last two decades due
to evolution of digital computing and limitations of traditional
modeling techniques.

Our goal in this work was to create MSMs that can accurately
predict inventory parameters and LCIA results for a large variety
of chemicals, ranging from basic to advanced and fine chemicals.
Such models would be of substantial use to process designers as
fast and simple tools to assess the sustainability of different
productions, to use screening LCAs as decision-making support
and to assess their supply chains. They would also be a significant
improvement for industrial ecologists and LCA practitioners.

Methods

To create estimation models that can accurately predict pro-
duction parameters, the underlying data needed to cover a
large amount of chemicals from different classes of chemical
structures. We gathered a dataset of 392 complete cradle-to-
gate inventory data of organic petrochemical production from
several sources. 296 datasets were based directly on industrial
production data. These were gathered by industrial partners with
direct access to production data and measurements. Most data
were cradle-to-gate, but a few were missing data on auxiliaries
and upstream processes. In these cases the ecoinvent database
was used to complete the production data. These data are highly
confidential. However, the nature of neural networks allowed
their use to generate the models that render any introspective
into the production data impossible. The final 96 inventories
were taken from ecoinvent itself. As the models are designed to
predict energy consumption, the training data had to include

accurate information on energy use. Therefore, only datasets
not or minimally relying on estimations of energy use in their
production life cycle were included in the training data.

All datasets were based on petrochemical synthesis. Products
that included biosynthesis steps in their production were not
included in the data. Data quality was judged to be very high,
with the industry data based on direct production documenta-
tion and measurements and the ecoinvent data based on detailed
production data and thorough research of public sources of
information. The chemicals in the dataset were diverse, ranging
from basic chemicals to more complex and fine chemicals. As the
composition of the electricity mix can affect the environmental
impacts, all data were based on an average European (UCTE)
electricity mix.

While all data were based on high quality sources, some
inconsistencies should be expected when combining existing
data sources. Different production processes can be one ex-
planation for the differences. Furthermore, some production
parameters were still estimated by the data collectors, and
differing standards and assumptions led to different results.
Cases of multiple datasets for the same chemicals allowed us
to quantify these variations and determine parameters with
fundamental differences. For training purposes, these datasets
were averaged to have only one input per chemical, reducing
the number of chemical inventories from 392 to 338. Table 1
offers insight into the dataset composition. The major output
selected for the models was the Cumulative Energy Demand
(CED).21 The CED represents the total amount of primary
energy potential used during the production life cycle. It is
therefore a purely resource-oriented method. Nevertheless it has
been shown to correlate well with many other LCIA methods,22

meaning that the CED may be used as an indicator for other
environmental impact methods, the calculation of which might
otherwise require additional emission data. In addition, a large
fraction of the environmental impacts of chemical production
in developed countries can be linked to energy and resource
use;6 for these reasons the CED can serve as a proxy of
general environmental impact. Resource-oriented methods also
have the advantage that production data are usually of better
quality than emission data, which are less well documented.
Furthermore, models for the Global Warming Potential23 were
created to address an issue important for many process designers
nowadays, as the focus in sustainability continues to shift
towards Global Warming. As mass flows can be estimated more
easily than energy flows in chemical synthesis, a special effort
was undertaken to estimate heat and electricity use separately
in the production cycle to aid practitioners with mass flow but
no energy data. Many datasets did not offer this information
however, so the available dataset for these models was only a

Table 1 Composition of the training dataset of 338 chemical inventories

Molecular Weight
[g/mol]

Number of functional
groups†

Cumulative Energy
Demand [MJ-eq/kg]

Global Warming Potential 100a
[kg CO2-eq/kg]

Minimum 30 0 30 0.5
Maximum 1200 30 1400 9
Mean 160 3.5 170 7
Median 130 3 100 4

This journal is © The Royal Society of Chemistry 2009 Green Chem., 2009, 11, 1826–1831 | 1827
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fraction of the total dataset. These models estimate direct heat
and electricity use. The Eco-indicator 9924 method offers an
overall estimation of all environmental damages weighed against
each other. The weighting allows a direct comparison of different
environmental impacts.

However, it is of course a subjective step, so results are
biased by the opinions represented by the weighting scheme.
Again, only a fraction of the dataset allowed calculation of
Eco-indicator 99 results and could be used to create models. In
theory, there are many ways to describe molecules. In the present
study, the selection was limited to descriptors directly calculable
from the molecular structure and occurring with some regularity
within the available dataset.

A Multi-Layer Perceptron (MLPs) structure was used to
develop the models. Other neural network structures were also
tested but did not improve prediction accuracy.† The MLPs were
developed with a pre-selection of descriptors based on chemical
expertise. 10 descriptors were selected from a larger group to best
describe production-relevant molecular features to the models:

∑ molecular weight
∑ number of functional groups (total)
∑ number of oxygen atoms in keto and aldehyde groups
∑ number of oxygen atoms not in keto and aldehyde groups
∑ number of nitrogen atoms
∑ number of halogen atoms
∑ number of aromatic or aliphatic rings
∑ number of ternary or quaternary carbon atoms
∑ number of heteroatoms in rings
∑ number of unique substitutes on aromatic rings
A large data-to-weights ratio, i.e. greater than 8, is recom-

mended by a rule of thumb18 to ensure the resulting models
are capable to generalize well. Smaller ratios may lead to
overfitting, an effect where the models are fitted too strongly to
the specifics of the training set while their predictive capabilities
for other chemicals are inferior. If the ratio drops too low
below the threshold, the benefit of having more descriptors
to describe the models may be outweighed by the drawbacks
of overfitting and prediction accuracy decreases. The trade-off
between communicating as much information as possible to the
models while minimizing input size was reduced by reducing
the input dimensions through Principal Component Analysis
(PCA). PCA is a technique to reduce the number of input
variables by analyzing the descriptors for correlations and then
creating independent factors, which are a linear combination
of the original descriptors. These factors still contain most of
the information of the original descriptors while being fewer in
number.

A PCA was carried out and the 10 descriptors could be
reduced to 8 factors, which still accounted for over 95% of
the variance of the 10 descriptors. These were then used as
model input. The models used 7 hidden neurons.† This resulted
in 71 weights in the network and a still acceptable data-to-
weights ratio of 4.8. The models were therefore likely to be
susceptible to some overfitting, however a test series confirmed
that predictive capabilities decreased when reducing the input
size. The benefits of more information outweighed the problems
of overfitting in this case. For the Eco-indicator 99 models, fewer
factors were needed to perform well.† All models were trained
with a Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm,

a quasi-Newton method. For training, the input was randomly
separated into a training set and a test set 30 times. Each test
set contained 15% of the data, or 51 chemicals in this case.
After training, model quality was assessed by calculating the
coefficient of determination (q2) for the model predictions over
the test data. The final predictive models were a combination
of the best-performing models with each of the 30 test sets.
Applying the final models therefore yields 30 results, which are
averaged and can be subjected to uncertainty analysis.

For the models using smaller datasets, the procedure was
identical.

Results and discussion

Dataset analysis

The multiple inventories that existed for some chemicals allowed
for a statistical analysis of the output parameter variation for the
outputs that were available from more than one source. Of these,
the CED had the lowest variation between sources. On average,
the relative standard deviation of the CED is 24% and the me-
dian relative standard deviation is 17%. This means that for most
of the observed cases, the standard deviation was low compared
to the absolute CED value, implying consistency in method
among the different datasets. Similarly, the Global Warming
Potential shows both a mean and a median relative standard
deviation of 40%. These parameters were deemed acceptable
for predictive models, although the inherent uncertainty of the
training data limits the effectiveness of the GWP models. Some
production parameters on aqueous emissions were available but
showed strong variations between the different data sources.
For example, for the Total Organic Carbon (TOC) emissions
the mean relative standard deviation was 113% and the median
139%. In other words, the standard deviation was usually larger
than the mean value itself. In addition, the TOC and some other
parameters showed a systematic difference between the different
data sources, most likely due to different assumptions and
models during data gathering in the industry and by ecoinvent.
These uncertainties led us to conclude that models based on the
available output data were not feasible.

Prediction results

To assess the predictive qualities of the models, the coefficient
of determination (q2) between the test data and the model
predictions were calculated. For each output parameter, 30
networks were created and validated using the 30 test sets. Each
model was evaluated on the average performance over these
networks. Table 2 shows the q2 results for the different models
and outputs.

Table 2 Coefficients of determination for the structure-based models.
All values are means over the 30 test sets, standard deviations in
parentheses. The size of the available data sets is given as n for each
output

CED (n = 338) 0.58 (0.13)
GWP (n = 338) 0.41 (0.23)
Eco-indicator 99 (H/A) (n = 142) 0.69 (0.12)
Electricity Use (n = 250) 0.59 (0.13)
Heat Use (n = 250) 0.47 (0.20)

1828 | Green Chem., 2009, 11, 1826–1831 This journal is © The Royal Society of Chemistry 2009
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The coefficients of determination are generally in the range
of 0.4 to 0.7. The coefficient of determination is lower for the
GWP—this is most likely due to the heterogeneousness of the
input set (see dataset analysis). Note that the models based on
only fewer data sources (Eco-indicator 99, electricity and heat)
suffer less from variations within the data sets. In addition,
q2 scores become more significant as the number of data points
increases, so a direct comparison is difficult.

The 30 networks performing best for the 30 test sets were
selected to comprise the final models. Therefore, each model for
a specific output actually consists of 30 individual networks
trained and tested with different combinations of inventory
data. Our suggested application is to use all 30 models to
acquire a set of predictions which can be averaged to achieve
a final prediction. This has the added benefit of providing a
standard deviation which can be used as a measure of prediction
uncertainty. When all networks agree in their prediction, the
likelihood of a wrong prediction is expected to be lower. As an
example of the model predictive capabilities the CED predictions
are plotted against the inventory data in Fig. 1.

Fig. 1 Relative inventory data and model predictions of the CED for
the 338 inventories. The line represents the ideal line where data and
predictions match. The mean relative error is 29.1%.

To assess the predictive qualities of the final models, they
were applied directly to predict the full, available dataset (338
chemicals, or less depending on the target parameter). With these
results, several measures of model quality could be calculated:
the absolute and the relative errors as measures of the models’
preciseness and the error as a multiple of the standard deviation
for the prediction.

The last measure utilizes the fact that each prediction has
an individual uncertainty value attached to it—the standard

deviation of the 30 individual predictions. By assessing the true
error as a multiple of this standard deviation, the reliability of
the ranges given by the model could be evaluated. To analyze
how these measures can describe the capabilities of the models,
the relative errors are plotted in Fig. 2, together with the model
predictions and the inventory data for the chemicals. The figure
shows that many of the largest relative errors occur due to
chemicals with low CEDs being overestimated by the models.

Fig. 2 Final model results for the CED prediction for relative error.
These are the results of the final models selected for prediction, applied
to the 338 datasets. 95% of the chemicals in the dataset have a relative
error of less than 87.5%. For comparison, the secondary axis on the
right shows the model predictions compared with the inventory data for
the same chemicals.

The full results of all models can be seen in Table 3. The
CED models show adequate prediction capabilities and perform
well within the requirements of screening LCAs with a mean
relative error of 29.1% and a mean absolute error of 36 MJ-eq/
kg, given that the models were applied to a data range spanning
from 30 to roughly 1400 MJ-eq/kg. Considering the uncertainty
of roughly 20% in the original training data, this result is
satisfying. In addition, the error in standard deviations is a
measure of how well the models’ own estimation of their
uncertainty describes the true model uncertainty. A range of 1.97
standard deviations plus and minus the model result included the
true value in 95% of the cases. The approach presented therefore
allows both a prediction of a value and an assessment of the
predictive uncertainty. The GWP models perform less well, as
could be expected after the lower coefficients of determination
and the higher variation in the original data. The Eco-indicator
99 models perform very well, with both low relative errors and
a good measure of models uncertainties.

The Electricity and Heat models also perform well. The mean
relative errors for both inventory parameters are heavily affected

Table 3 Predictive measures for the final models

CED GWP Eco-indicator 99 Electricity Use Heat Use

Mean absolute error 36 MJ-eq/kg 2.1 kg CO2-eq/kg 0.071 Pt 3.0 MJ/kg 18.4 MJ/kg
Median absolute error 24 MJ-eq/kg 1.4 kg CO2-eq/kg 0.047 Pt 1.9 MJ/kg 12.8 MJ/kg
Mean relative error [%] 29.1 58.2 20.7 94.6 76.4
Median relative error [%] 20.2 29.5 11.5 27.0 23.9
Mean error in standard deviations 0.74 0.66 0.74 0.60 0.71
Median error in standard deviations 0.55 0.50 0.49 0.42 0.42

This journal is © The Royal Society of Chemistry 2009 Green Chem., 2009, 11, 1826–1831 | 1829
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Table 4 Results for basic and advanced chemicals according to different criteria. All predictions refer to the CED

Divided by the Molecular Weight Divided by the number of functional groups Divided by the CED

Lower Half (Range) 30–126 g/mol 0–3 FG 31-99 MJ-eq/kg
Mean relative error [%] 33.0 29.9 37.8
Median relative error [%] 25.1 23.2 28.6
Mean error in standard deviations 0.83 0.90 0.71
Median error in standard deviations 0.65 0.64 0.58

Higher Half (Range) 126–1200 g/mol 3–30 FG 100–1400 MJ-eq/kg
Mean relative error [%] 25.2 28.3 20.4
Median relative error [%] 14.8 16.9 14.7
Mean error in standard deviations 0.65 0.59 0.78
Median error in standard deviations 0.43 0.46 0.51

by a few data points for chemicals requiring either almost no
heat or almost no electricity in their production. The causes
are exothermic reactions, where heat and electricity use can be
avoided through use of high energy feedstocks, resulting in a
very low or even negative heat or electricity use. These are well
predicted in absolute terms, but the closeness of the results to
zero results in high mean relative errors, much higher than the
median relative errors. Furthermore, processes can be combined
to utilize excess heat, which is not reflected in the heat use models.
Some uncertainties are therefore unavoidable. Nevertheless,
the errors for all predictions are within acceptable ranges for
screening and design uses, especially given the inherent basic
uncertainty of the training data (e.g. 24% for the mean relative
CED error, see Dataset Analysis).

As seen in Fig. 2, the models can predict most substances
in the dataset quite well, while a limited number of chemicals
show a larger error in the prediction of the CED.† The model
predictions were therefore analyzed to identify the classes of
chemicals which were well and not well modeled. Using the
CED models as an example, Table 4 shows the errors if the
dataset is split into two equally sized halves using the molecular
weight and the number of functional groups as measures of
complexity. In addition, as the CED itself can be regarded as
a measure of the complexity of the production, we assessed the
model results for basic and advanced chemicals defined as having
a CED below or above 100 MJ-eq/kg respectively (this also
separated the dataset in 2 equal halves). There is no common
agreement on how to define basic vs. fine chemicals but these
indicators are all qualified in some degree to be a measure of the
complexity of the chemical.

Naturally, the more complex chemicals have higher absolute
errors, this is due to the fact that the average CED is higher
for complex chemicals regardless of the type of definition of
complexity. The relative errors, however, decrease when the
models are applied to more complex chemicals as seen in
Table 4, a finding supported by the results shown in Fig. 2. The
model errors are actually lower for more complex chemicals,
while the prediction of very basic chemicals is more difficult.
This may be due to the increased use of highly specialized
processes for basic, mass-produced chemicals. The restrictive
costs of developing specialized processes limit these to mass-
produced basic chemicals such as solvents. Fine chemicals on
the other hand are often produced in multi-purpose batch-
plants, sharing equipment and utilizing standard reactions,
which facilitates modeling their production. Furthermore, the

models also describe the prediction error more correctly for
complex chemicals, and the errors in relation to the standard
deviations are usually lower for the complex productions. The
models perform best for the classes of chemicals for which
production data is scarcest and where models are needed most.

One limitation of the models is that the estimation error may
increase if the tested molecule is significantly different than
the chemicals in the dataset of 338 chemicals used for this
work. Chiral substances for example fall in this category. It is
likely that the production requirements for chiral substances
are underestimated to some degree using these models. As the
models can be easily updated when data become available, this
is one area of future work. However, as of yet LCIs of chiral
productions are very scarce.

Application example

To demonstrate the use of the models, the CED and GWP
models have been applied to 5 chemical productions of organic
chemicals. After the descriptors were entered as the input, the
calculations ran automatically. The model results, each given as
the mean of the 30 individual models and the standard deviation
of the 30 results to serve as an uncertainty approximation of the
models, are shown in Fig. 3.

Fig. 3 Sample results for the application of the CED and GWP models.
Molecular weights are shown under each chemical. The ecoinvent values
are given for comparison. The individual standard deviations cover most
of the true values (THF = tetrahydrofuran).

As can be observed, most of the examples are covered by
the uncertainty ranges of the model predictions. The results for

1830 | Green Chem., 2009, 11, 1826–1831 This journal is © The Royal Society of Chemistry 2009
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ethanol are higher than the ecoinvent values for both the CED
and the GWP, and both fall outside of the uncertainty ranges.
This is an example of the models’ problems with very basic and
mass-produced chemicals discussed earlier. However, since basic
chemicals with very high production volumes are more likely to
be covered by databases such as ecoinvent than more specialized
chemicals, the models should not be applied to these chemicals
in any case.

For the other chemicals, the predictions are adequately close
to the ecoinvent data to be of use for the intended purposes.
More importantly, the standard deviations of the model results
can serve as a meaningful indicator of the prediction quality. As
can be observed, most errors are significantly smaller than the
uncertainty ranges provided by the models. In the end, the user
may decide how important the inclusion of the true value is for
his or her purposes and may scale the ranges accordingly.

Conclusions

We have presented an advanced and thorough method to gener-
ate molecular structure-based models for inventory parameters
and Life Cycle Impact Assessment results and have analyzed
the resulting models. We tested several network structures
and optimization strategies for neural networks to generate
models that show high prediction capabilities. The models
show satisfactory predictive capabilities for the purposes of
screening LCA, supply chain management and process design.
The models are “black box” type models, which allow the
free publication of the models for the CED, GWP and Eco-
indicator 99 for public use. The CED models combine the
scope of the full dataset and an accurate data basis. As the
CED correlates well with several other LCIA methods,22 this
model is especially useful. The three models are available in the
supporting information† as well as through direct download
(http://www.sust-chem.ethz.ch/tools/finechem).

The models offer both estimations of key parameters and
an uncertainty value for the result, allowing an assessment of
the prediction accuracy. Our analyses show that the models are
especially suited to predicting properties of the more complex
productions of advanced and fine chemicals, the areas for which
data are needed most. The models can be updated and extended
in scope and capabilities as new data become available for
training. These models are a significant advancement over the
previous options available for sustainability managers, LCA
practitioners and process designers and can assist them by
providing estimations for the many chemicals on which no
accurate production data is available due to lack of process
information or confidentiality issues.
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